

ð

ð

N e w t o n A p p l i c a t i o n
D e v e l o p m e n t

Newton Internet Enabler

Version 1.0

© Apple Computer, Inc. 1996

Draft. Preliminary, Confidential. © Apple Computer, Inc. 6/13/96

Apple Computer, Inc.
© 1996, Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any form
or by any means, mechanical,
electronic, photocopying,
recording, or otherwise, without
prior written permission of Apple
Computer, Inc., except in the
normal use of the software or to
make a backup copy of the
software. The same proprietary
and copyright notices must be
affixed to any permitted copies as
were affixed to the original. This
exception does not allow copies to
be made for others, whether or not
sold, but all of the material
purchased (with all backup copies)
may be sold, given, or loaned to
another person. Under the law,
copying includes translating into
another language or format. You
may use the software on any
computer owned by you, but extra
copies cannot be made for this
purpose.
Printed in the United States of
America.
The Apple logo is a registered
trademark of Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal
and state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual
property rights associated with the
technology described in this book.
This book is intended to assist
application developers to develop

applications only for Newton
devices.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, APDA,
AppleLink, LaserWriter,
Macintosh, Mac, MPW,
MessagePad, and Newton are
trademarks of Apple Computer,
Inc., registered in the United States
and other countries.
Adobe Illustrator and PostScript
are trademarks of Adobe Systems
Incorporated, which may be
registered in certain jurisdictions.
FrameMaker is a registered
trademark of Frame Technology
Corporation.
Helvetica and Palatino are
registered trademarks of Linotype
Company.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Varityper is a registered trademark
of Varityper, Inc.
Windows is a trademark of
Microsoft, Inc.

Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects in the
manual or in the media on which a
software product is distributed, APDA
will replace the media or manual at no
charge to you provided you return the
item to be replaced with proof of
purchase to APDA.

ALL IMPLIED WARRANTIES ON
THIS MANUAL, INCLUDING
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO NINETY

(90) DAYS FROM THE DATE OF THE
ORIGINAL RETAIL PURCHASE OF
THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO
WARRANTY OR REPRESENTATION,
EITHER EXPRESS OR IMPLIED,
WITH RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. AS A
RESULT, THIS MANUAL IS SOLD
“AS IS,” AND YOU, THE
PURCHASER, ARE ASSUMING THE
ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE
LIABLE FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES
RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS MANUAL,
even if advised of the possibility of
such damages.

THE WARRANTY AND REMEDIES
SET FORTH ABOVE ARE EXCLUSIVE
AND IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS OR
IMPLIED. No Apple dealer, agent, or
employee is authorized to make any
modification, extension, or addition to
this warranty.

Some states do not allow the exclusion
or limitation of implied warranties or
liability for incidental or consequential
damages, so the above limitation or
exclusion may not apply to you. This
warranty gives you specific legal rights,
and you may also have other rights
which vary from state to state.

iii

Contents

Contents

Contents iii

Chapter 1

Newton Internet Enabler

1-1

About Newton Internet Enabler 1-2
The Inet Tool Layer 1-4
The Link Controller 1-4
The Domain Name Service Interface 1-6

Using Newton Internet Enabler 1-7
Using Endpoints With Newton Internet Enabler Links 1-8

Using Multiple Endpoints With a Link 1-9
Newton Internet Enabler and Callback Functions 1-9
Using the Newton Internet Enabler Link Controller 1-11

Grabbing a Link 1-12
Retrieving and Displaying Link Status Information 1-15
Configuring Newton Internet Enabler for Your

Endpoint 1-16
Binding Your Endpoint with Newton Internet

Enabler 1-17
Connecting Your Endpoint with Newton Internet

Enabler 1-18
Sending Data 1-18

Sending Data With a UDP Connection 1-19
Sending Data With a TCP Connection 1-20

Receiving Data 1-21

iv

Receiving Data With UDP 1-21
Receiving Data With TCP 1-23

Disconnecting Your Endpoint 1-25
Releasing Your Link 1-26
Power Management and Internet Links 1-27

Using the Domain Name Service Interface 1-27
Using the Newton Internet Enabler Options 1-29

Newton Internet Enabler Interface Reference 1-30
Constants 1-30

Status Code Constants 1-31
Transport Service Type Constants 1-31
Link Controller Error Codes 1-31
DNS Error Codes 1-32
Newton Internet Enabler Lower-Level Tool Errors 1-34

Inet Tool Errors 1-34
Application-related Errors 1-37
UDP Errors 1-40
Inet Tool-Specific Errors 1-41

Newton Internet Enabler Events 1-42
Handing TCP Disconnect Events 1-43

Newton Internet Enabler Function Parameter
Information 1-43

The Link Identifier Parameter 1-43
The Client Context Parameter 1-44
The Client Callback Parameter 1-44
The Link Controller Callback Function Format 1-45

The Link Controller Status Frame 1-45
The Link Entry Information Frame 1-46

Login Script Frames 1-49
The Domain Name Service Callback Function Format 1-50

The DNS Results Frame 1-51
Link Controller Functions and Methods 1-53

InetAddNewLinkEntry 1-53
InetCancelCurrentRequest 1-53
InetCancelLink 1-53
InetDisconnectLink 1-54

v

InetDisplayStatus 1-54
InetGetAllLinksStatus 1-56
InetGetDefaultLinkID 1-57
InetGetLinkEntry 1-57
InetGetLinkStatus 1-57
InetGrabLink 1-58
InetOpenConnectionSlip 1-59
InetReleaseLink 1-60
InetSetDefaultLinkID 1-61

Domain Name Service Functions and Methods 1-61
DNSCancelRequests 1-61
DNSGetAddressFromName 1-62
DNSGetMailAddressFromName 1-63
DNSGetMailServerNameFromDomainName 1-64
DNSGetNameFromAddress 1-66

Newton Internet Enabler Options 1-67
Inet Tool Expedited Data Transfer ('iexp') Option 1-67
Inet Tool Physical Link Identifier ('ilid') Option 1-68
Inet Tool Local Port ('ilpt') Option 1-69
Inet Profile ('iprf') Option 1-71
Inet Tool TCP Remote Socket ('itrs') Option 1-72
Inet Tool Transport Service Type ('itsv') Option 1-73
Inet Tool UDP Destination Socket ('iuds') Option 1-74
Inet Tool UDP Source Socket ('iuss') Option 1-75

Newton Internet Enabler Exceptions 1-76
Summary of Newton Internet Enabler 1-77

Link Controller Errors 1-77
DNS Errors 1-77
Newton Internet Enabler Lower-Level Tool Errors 1-78
Link Controller Functions and Methods 1-80
DNS Functions and Methods 1-80
Exceptions 1-80

vi

Newton Internet Enabler 1

This chapter describes the NewtonScript interface to Newton Internet
Enabler, a collection of built-in software that allows Newtons to interface
with the Internet. This chapter describes:

■

how the components of Newton Internet Enabler work together

■

how to use Newton Internet Enabler in your NewtonScript applications

■

the constants, protos, functions, and methods that you use with Newton
Internet Enabler

■

the options that you use to control and configure Newton Internet Enabler

For information about the user interface to Newton Internet Enabler, see the

User’s Guide to Newton Internet Enabler

.

To use Newton Internet Enabler, you must understand how to use endpoints
to perform communications operations on the Newton. To learn about
endpoints, see the chapter “Endpoint Interface” in

Newton Programmer’s
Guide

.

Figure 1-0
Table 1-0

C H A P T E R 1

Newton Internet Enabler

1-2

About Newton Internet Enabler

About Newton Internet Enabler 1

With Newton Internet Enabler, you can establish a link to the Internet to
allow your applications to communicate over the net. Newton Internet
Enabler supports one link to the Internet at any time; however, several
Newton applications can use that link to perform communications.

Newton Internet Enabler consists of an application named Internet Setup,
with which users can configure their Internet access, and a NewtonScript
application programming interface (API), with which you can send and
receive data, determine status, and modify your configuration parameters.

Underneath the NewtonScript API is the Inet tool, which is a built-in
Newton communications tool that is used by the other Newton Internet
Enabler components to provide the standard Newton communications
operations.

The Newton Internet Enabler interface components are:

■

The Inet communications tool, which provides the capability to establish
and use links to the Internet via the TCP/IP family of protocols. This tool
implements a streams interface with a communications stack, providing
the capability to use various transport-level and link-level protocols. You
can use standard Newton communications endpoint methods and options
to control the operations provided by the Inet tool.

■

The Link Controller, which uses the Inet tool and maintains net links at a
higher level, providing a convenient NewtonScript interface for
applications. You use the link controller by calling the global functions
that it provides.

■

The Domain Name Service interface, which provides functions for
converting between Internet host names and their corresponding IP
Numbers. You use the domain name service by calling the global
functions that it provides.

Figure 1-1 shows the relationship of the Newton Internet Enabler
components.

C H A P T E R 1

Newton Internet Enabler

About Newton Internet Enabler

1-3

Figure 1-1

The Newton Internet Enabler layers and components

NewtonScript
client applications

Link Controller

Link setup
information

Domain
Name
Server

host names,

configuration info

Inet tool option requests

Inet tool

UDP

Lower-level Newton comm tool

(e.g. the built-in modem tool)

('inet')

physical link requests
(communications tool requests,

Link
Controller
requests

IP numbers

data indata out

TCP

Inet tool
function calls

e.g. connect, get, put, etc.)

endpoint
communications
scripting calls

SLIPPPP

transport protocols

link-level protocols

IP

serial stub driver

Newton Internet Enabler communications stack

C H A P T E R 1

Newton Internet Enabler

1-4

About Newton Internet Enabler

The Inet Tool Layer 1

The Inet communications tool provides a configurable stack of protocols at
and below the TCP/IP level. The Inet tool is a standard Newton
communications tool, which means that it provides all of the endpoint
services that are provided by other built-in communications tools, including
the built-in modem tool and the built-in serial tool.

Like the other communications tools, you can control the configuration of the
Inet tool with communications options. The options that you use with the
Inet tool all use the

'inet'

 service identifier and are described in this
chapter.

For more information on how to use the Newton endpoint interface, Newton
communications options, and the other built-in communications tools, see

Newton Programmer’s Guide

.

The Inet tool supports physical links using the built-in serial tool or the
built-in modem tool. You are currently limited to the use of one physical link
at any point in time.

The Inet tool can run various link-level protocols that are provided with the
Newton system software. These currently include PPP and SLIP.

The Inet tool can establish links using various low-level communications
services. Each communications service is provided by a Newton
communications tool such as the built-in modem tool.

The Link Controller 1

You can use the Link Controller to create and manage a link between the
Newton and the Internet. The Link Controller can manage a single link for
multiple applications simultaneously. This means that one application
establishes the link and other applications use the same link.

The Link Controller uses and provides a higher-level interface to the link
control functions and options supported by the Inet tool. The Link Controller
functions are global functions built into the Newton operating system. The

C H A P T E R 1

Newton Internet Enabler

About Newton Internet Enabler

1-5

use of the link controller functions is explained in the section “Using the
Newton Internet Enabler Link Controller” beginning on page 1-11.

The first grab of a link can be expensive in terms of time: typically, the Inet
tool software dials the Newton modem and negotiates the connection to
establish an Internet session. The Inet tool then performs whatever login and
initialization procedures are required, which the user has configured with
the Internet Setup application. All of this can take a substantial amount of
time.

Since it can take so much time to grab a new link, Newton Internet Enabler
makes it easy for another application to grab a link that has already been
established. Whenever an application grabs a link, the link controller
increments its count of users of that link. The physical link is dropped only
after all users have released the link (when the count becomes

0

).

The following is an example of a typical flow of operations that occur during
an Internet session:

1. An application (“Application_1”) calls

InetOpenConnectionSlip

 to
allow the user to customize the link settings and then issues a call to the

InetGrabLink

 function. The link controller dials the modem and begins
an Internet session with an Internet provider.

2. Application_1 instantiates and binds one or more endpoints to use over
that link. Each endpoint can use either the TCP or UDP transport services.
And you bind each endpoint either to initiate an outgoing connection
(

connect

) or to listen for an incoming connection (

listen

).

3. Application_1 uses its endpoint(s) to perform communications operations.

4. Another application (“Application_2”) calls

InetOpenConnectionSlip

to allow the user to customize the link settings and then issues a call to the

InetGrabLink

 function to use the same service provider as
Application_1. The Inet tool returns the same link that it established in
step 1.

5. Application_2 creates and uses endpoint(s) to perform communications
operations.

6. Application_2 finishes its use of the link and calls the

InetReleaseLink

function. The link controller decrements its count of users of the link.

C H A P T E R 1

Newton Internet Enabler

1-6

About Newton Internet Enabler

7. Application_3 grabs the link, creates endpoints to use over the link, and
releases the link.

8. Application_1 finishes its use of the link and calls the

InetReleaseLink

function. The link controller decrements its count of link users. The count
becomes 0, so the link is dropped: the Internet session ends, the modem is
hung up, and any resources used for the link are released.

Note

Only one Internet session can be active at any time. This
means that if an application requests a link to a different
Internet service provider when a session is in progress, the

InetGrabLink

 call will fail and generate an error.

◆

The Domain Name Service Interface 1

The domain name service interface builds on top of the Inet tool to provide
Newton applications with the ability to translate Internet domain names into
IP numbers and vice-versa. The domain name service (DNS) functions are
also global functions in the Newton operating system. You can use these
functions to:

■

translate a domain name into its corresponding Internet address

■

translate a a domain name into the Internet address for a mail server that
serves that domain

■

translate a domain name into the domain name for a mail server that
serves that domain

■

translate an Internet address into its corresponding domain name

IMPORTANT

The Newton Internet Enabler implements what is known as
a “stub domain name service resolver.” The NIE domain
name resolver does not re-query the server based on what
type of response it received. This means that users must
specify a recursive name server for their DNS server.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler

1-7

The use of the domain name server functions is explained in the section
“Using the Domain Name Service Interface” beginning on page 1-27.

Using Newton Internet Enabler 1

This section helps you understand how to use Newton Internet Enabler in
your NewtonScript application programs. To use Newton Internet Enabler,
you need to know about the options and functions provided by the Newton
Internet Enabler API. You also need to understand the callback functions that
many of the functions use to communicate results back to your application.
And finally, you need to know the proper sequence of steps to take when
using Newton Internet Enabler.

The next section, “Using Endpoints With Newton Internet Enabler Links,”
describes the relationship between the links that Newton Internet Enabler
maintains for you and Newton communications endpoints.

The section, “Newton Internet Enabler and Callback Functions” beginning
on page 1-9 describes the format and use of callback functions with Newton
Internet Enabler.

The section “Using the Newton Internet Enabler Link Controller” beginning
on page 1-11 outlines the basic sequence of steps that you need to perform to
use the link controller with a Newton communications endpoint. The
subsections of “Using the Newton Internet Enabler Link Controller” describe
each step in detail.

The section “Using the Domain Name Service Interface” beginning on
page 1-27 describes how to use the domain name service API to translate
between Internet addresses and domain name strings.

The section “Using the Newton Internet Enabler Options” beginning on
page 1-29 provides detailed information about using Newton
communications options to configure and control your Newton Internet
Enabler sessions.

C H A P T E R 1

Newton Internet Enabler

1-8

Using Newton Internet Enabler

Note

You can override the default Inet icon by defining the

'Icon

slot in your application’s base view.

◆

Using Endpoints With Newton Internet Enabler Links 1

You use Newton Internet Enabler in your applications in much the same way
that you use the other built-in Newton communications tools: you instantiate
endpoints to use with Newton Internet Enabler and perform your
communications operations with those endpoints. To learn about endpoints,
see the chapter “Endpoint Interface” in

Newton Programmer’s Guide

.

You specify the Newton Internet Enabler service identifier (

'inet'

) in your
service options, and configure Newton Internet Enabler by passing options
in options frames to your endpoint methods. See the section “Using the
Newton Internet Enabler Options” beginning on page 1-29 for information
about which options to use with each of your endpoint methods.

You can use a Newton Internet Enabler link with more than one endpoint. In
fact, it makes sense to reuse your link with multiple endpoints over the life of
your application: the first application to grab the link establishes an Internet
session by dialing a modem and negotiating the low-level connection, and
subsequent applications can use the same session without having to pay that
price.

Your application can use several endpoints with the same Newton Internet
Enabler link. Each endpoint, however, requires a significant amount of
memory. And the Newton system software restricts the total number (for all
applications) of endpoints that can be active.

To use multiple endpoints in your application, follow this sequence of
operations:

1. Grab the link, as described in the section “Grabbing a Link” beginning on
page 1-12.

2. Instantiate your first endpoint for use with Newton Internet Enabler. Use
this endpoint to perform communications and then dispose of the
endpoint.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler

1-9

3. Instantiate, use, and dispose of other endpoints.

4. Release your Newton Internet Enabler link, as described in the section
“Releasing Your Link” beginning on page 1-26.

Using Multiple Endpoints With a Link 1

Several Newton applications can use endpoints at the same time. In fact,
multiple applications can use multiple endpoints with a single Newton
Internet Enabler link. However, there are certain restrictions around
endpoint usage that you must beware of:

■

Each endpoint requires a significant amount of memory

■

The number of endpoints that can be open on the Newton at any time is
limited. The exact limit depends on your hardware configuration.

■

The limit on opened endpoints applies to the Newton as a whole. This
means that if the machine limit is 4 endpoints and one application is using
2 endpoints, all other applications will be restricted to the possibility of
using 2 endpoints.

Newton Internet Enabler and Callback Functions 1

Many of the Newton Internet Enabler functions require you to provide a

callback function

, which is a function that the Inet tool calls during and/or
after the performance of the operation that you requested. The callback
function receives status and error information.

For example, the

InetCancelLink

 function calls the callback function that
you provide after it finishes its operation. Your callback function for

InetCancelLink

 can determine if an error occurred and can determine the
current status of the link that you wanted cancelled.

Some operations call your callback function more than once. For example,
the

InetGrabLink

 function calls the callback function you provide many
times during its operations. You can use your

InetGrabLink

 callback
function to monitor the progress of the grab, since each call to it provides
you with the current status.

C H A P T E R 1

Newton Internet Enabler

1-10

Using Newton Internet Enabler

When a function requires that you specify a callback function, you do so by
providing a context frame and the symbol of the function defined in that
frame that you want to use as the callback function. For example, the

InetGrabLink

 function takes three parameters and is declared as follows:

InetGrabLink(

linkID, clientContext, clientCallback

);

When you call InetGrabLink, you must specify a frame (or your application
frame) as the value of

clientContext

, and you must specify a function defined
in the frame as the value of

clientCallback

.

You might create a callback function for your

InetGrabLink

 calls that looks
like the following:

myApp.GrabLinkCallback := func(linkID, stat, err)

begin

if err=nil and stat.linkStatus <> 'connected then

; // display status

if err then

; //handle the error

// link established, so resolve the address

end;

Then, when you call the

InetGrabLink

 function in your application, you
pass it the name of your callback function. For example:

myApp.TestGrab := func()

begin

myStatusView := InetStatusDisplay(nil, nil, nil);

InetGrabLink(nil, self, 'GrabLinkCallback);

...

end;

This function first calls the

InetStatusDisplay

 function to create and
display the status view. The call to

InetGrabLink

 uses the default link ID
and specifies self (the application frame) as the value of the clientContext
parameter, and 'GrabLinkCallback (the symbol for the callback function)
as the value of the clientCallback parameter. The GrabLinkCallback

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-11

function will be called repeatedly while the system is attempting to grab the
link, until either the status is 'connected or an error occurs.

The section “Grabbing a Link” beginning on page 1-12 provides a complete
example and explanation of a callback function for the InetGrabLink
function.

The section “Retrieving and Displaying Link Status Information” beginning
on page 1-15 describes how to use the InetStatusDisplay function to
display the progress of your InetGrabLink operation.

The section “Newton Internet Enabler Function Parameter Information”
beginning on page 1-43 provides a detailed description of the clientContext
and clientCallback parameters that you use in your Newton Internet Enabler
function calls.

Using the Newton Internet Enabler Link Controller 1
The following is the sequence of steps that you need to perform when using
Newton Internet Enabler in your application. Each step is described in detail
in the sections that follow.

1. Grab a link by calling the InetGrabLink function. Before calling
InetGrabLink, call InetOpenConnectionSlip to allow the user to
modify the default link settings. While the link is being grabbed, call the
InetDisplayStatus function to report the current link status to the
user. After the link is grabbed, store the returned link ID into a variable for
future access.

2. Instantiate an endpoint, passing down the Inet configuration options.

3. Bind the endpoint. The options that you pass down depend on whether
you are using TCP or UDP, and on whether you are binding to initiate an
outgoing connection (connect) or to wait for an incoming connection
(listen).

4. Connect the endpoint. If you are using a TCP link, pass down the TCP
remote socket option.

5. Set up the input spec for your endpoint.

C H A P T E R 1

Newton Internet Enabler

1-12 Using Newton Internet Enabler

6. Set up the output spec for your endpoint.

7. Send and receive data.

8. Disconnect and dispose of your endpoint.

9. Release the link by calling the InetReleaseLink function.

Grabbing a Link 1

To get started, you need to establish (grab) a link. To establish a link, you
need to call the InetGrabLink function. Before calling InetGrabLink, you
should call the InetOpenConnectionSlip function to allow the user to
modify the default link settings. This function also resets the default link ID.

InetOpenConnectionSlip(linkID, clientContext, clientSlipCallback)

After InetOpenConnectionSlip finishes, it calls your callback function to
let you know whether or not to proceed with the connection process.
InetOpenConnectionSlip passes one parameter, a symbol, to your
callback function. If the symbol is 'connect, you should proceed with the
connection; if not, the user cancelled the connection,

After calling InetOpenConnectionSlip, you call InetGrabLink with a
link ID, a callback function, and a callback context frame:

InetGrabLink(linkID, clientContext, clientCallback)

For the linkID, you can tell InetGrabLink to use the default link by using
nil or you can use an identifier returned by the InetAddNewLinkEntry
function as the value of this parameter. When you specify nil, the system
software uses the link ID that has been established as the default link ID.
This is the ID established by the user in the connection slip. You almost
always use nil as the value of this parameter to specify the default link ID,
especially if you have first called InetOpenConnectionSlip.

The InetGrabLink operation can take some time to complete. After you
call the InetGrabLink function, the Newton system software repeatedly
calls your callback function to report the current status of grabbing the link.
InetGrabLink calls your callback function until either an error occurs or
until the status becomes 'connected.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-13

The status value in your callback is a status frame, as described in the section
“The Link Controller Status Frame” beginning on page 1-45. This frame
contains the current link status value and (possibly) other information. In
your callback, you can use the InetDisplayStatus function to show the
current status to the user. The next section, “Retrieving and Displaying Link
Status Information,” describes how to display status to the user.

Here is an example of a callback function for the InetOpenConnectionSlip
function:

mySlipCallback := func(action)

if action = 'connect then

InetGrabLink(nil, self, 'GrablinkCallback);

Here is an example of a callback function for the InetGrabLink function:

myApp.GrabLinkCallback := func(linkID, stat, err)

begin

myLinkID := linkID;

if err then

begin

// handle the error

GetRoot():Notify(kNotifyAlert, kAppName,

 call kGetInetError with (err));

// close the status dialog

InetDisplayStatus(nil, myStatusView, nil);

end

else if status.linkStatus <> 'connected then

begin

// just update the status dialog

InetDisplayStatus(nil, myStatusView, status);

end

else begin

// now connected, soclose status dialog

// or start sending your own status

local myStatus := {

C H A P T E R 1

Newton Internet Enabler

1-14 Using Newton Internet Enabler

statusText:"Resolving Internet Address",};

InetDisplayStatus(nil, myStatusView, myStatus);

// resolve our host name address

DNSGetAddressFromName("apple.com",self,

DNSCallback);

end;

end;

The first statement, myLinkID:=linkID, saves the ID of the link that
InetGrabLink is in the process of grabbing in one of your variables. You
might want to store the link ID for use in other portions of your application.

If grabbing of the link is progressing without errors, your callback function
gets called to report the progress. You can call the InetDisplayStatus
function, as shown in the above example. The myStatView view used in the
this example was created before the grab of the link was initiated, as shown
in the next section, “Retrieving and Displaying Link Status Information.”

The grab of the link terminates when the connection is made or when an
error occurs. In either case, you can remove the status display view at that
point. To do so, call the InetDisplayStatus function with nil as the
value of the status parameter.

If InetGrabLink encounters an error, the error code will be a non-zero
value and your application has to do something with that error. In the
example function, a message is displayed and the connection attempt is
terminated.

If InetGrabLink succeeds, the callback receives 'connected as the value
of linkStatus. At that point, you can perform any operations that are
appropriate. The example function takes this opportunity to convert its
remote echo host name into an IP address, which is saved in a local variable
by the DNSCallback function. While the name resolution is taking place,
the example updates the status display with its own message.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-15

Retrieving and Displaying Link Status Information 1

Many applications want to display status to the user while a net connection
is being established. Newton Internet Enabler makes this easy for you with
the InetDisplayStatus function, which displays link status information
on the Newton screen. Here is the declaration of the function:

statusView InetDisplayStatus(linkID, statusView, status)

You can use the InetDisplayStatus function in three ways, as follows:

■ to create a new status view, pass nil as the value of each parameter:
 myStatusView := InetDisplayStatus(nil, nil, nil);

■ to display status for a link in an existing status view, pass in the link ID,
the status view, and the status frame that was sent to your callback
function:
 InetDisplayStatus(myLinkID, myStatusView, myStatus);

■ to remove and dispose of the status view, pass nil as the value of the
status frame:
 InetDisplayStatus(myLinkID, myStatusView, nil);

The InetStatusDisplay function creates and uses a view that is based on
protoStatusTemplate. For information about this proto, see the chapter
“Additional System Services” in Newton Programmer’s Guide.

To initiate the status display, you need to open the status view. The most
convenient place to do this is just before your call to the InetGrabLink
function. For example, the following function creates the status view, stores it
in myStatView for subsequent use, and then calls the InetGrabLink
function:

DoGrabLink := func()

begin

myStatView := InetDisplayStatus(nil, nil, nil);

InetGrabLink(nil, self, 'GrabLinkCallback);

end;

C H A P T E R 1

Newton Internet Enabler

1-16 Using Newton Internet Enabler

While the grab operation is in progress, you can update the status display
whenever your callback function gets called. For example, the following
code segment from a grab link callback function updates the status display if
no errors have occurred and if the link status has not yet become
'connected:

if err = nil and status.linkStatus <> 'connected then

InetDisplayStatus(linkID, myStatView, stat);

When the grab operation is done, you can remove the status display. The
following code segment from a grab link callback function removes the
status display when the link status becomes 'connected:

if err = nil and status.linkStatus = 'connected then

InetDisplayStatus(linkID, myStatView, nil);

The view displayed by the InetDisplayStatus function contains a button
that the user can tap to call the InetCancelLink function.

Configuring Newton Internet Enabler for Your Endpoint 1

After grabbing your Newton Internet Enabler link, you need to instantiate
your endpoint. You send the Instantiate message to your endpoint with
the options required to configure Newton Internet Enabler for your
application.

You must set three options in your Instantiate message:

■ The 'inet service identifier option, which tells the Newton system
software to use Newton Internet Enabler with your endpoint.

■ The Inet tool physical link ('ilid') option, which tells Newton Internet
Enabler which link ID to use for your endpoint. Use the link ID that was
returned by the InetGrabLink function.

■ The Inet tool transport service type ('itsv') option, which tells Newton
Internet Enabler which transport type (for example, UDP or TCP) to use
for your endpoint.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-17

Binding Your Endpoint with Newton Internet Enabler 1

After you instantiate your endpoint, you need to bind it to an address. You
either bind your endpoint to connect (initiate an outgoing connection), or to
listen for an incoming connection. If you are binding an endpoint that is
going to listen, you always need to pass the Inet local port ('ilpt') option
when you send the Bind message to your endpoint. If you are binding an
endpoint that is going to connect, you need to pass the Inet local port option
for UDP links, but not for TCP links.

The Inet local port option has two data slots that you specify: a short value,
InetPortNumber, and a Boolean value, useDefaultPort. The
useDefaultPort value only applies when you are binding an endpoint to
connect over a UDP link. Assign the InetPortNumber a value as shown in
Table 1-1 when sending the local port option with a Bind request:

Table 1-1 Local port numbers for binding with Newton Internet Enabler

Bind type
Transport
service type Local port number

For
connect

TCP The system always selects the local port
number, so don’t set this option. You can,
however, send a get (opGetCurrent) of
this option with your Bind to retrieve the
port number that the system assigned.

C H A P T E R 1

Newton Internet Enabler

1-18 Using Newton Internet Enabler

Connecting Your Endpoint with Newton Internet Enabler 1

After instantiating and binding your endpoint, you need to connect it. If you
are using a TCP link, you need to pass the TCP remote socket ('itrs')
option when you send the Connect message to your endpoint. This option
sets the host address with which TCP connects. You can use the domain
name server to get this address, as described in the section “Using the
Domain Name Service Interface” beginning on page 1-27.

If you are using a UDP link, you do not need to pass any options in your
Connect message.

If you are sending the Listen message to your endpoint, you do not need to
send any options with that message.

Sending Data 1

You use Newton Internet Enabler to send data just as you would with any
Newton communications tool. You can set up an output specification frame

For
connect

UDP If you specify true for useDefaultPort,
Newton Internet Enabler will select the
local port to use and will return its value in
the option.

If you specify nil for useDefaultPort,
you must supply a port number that is not
in use or the Bind will fail.

For listen TCP Specify a port number to listen on as
defined by the IETF Assigned Numbers RFC
document.

For listen UDP Specify a port number to listen on as
defined by the IETF Assigned Numbers RFC
document.

Table 1-1 Local port numbers for binding with Newton Internet Enabler
(continued)

Bind type
Transport
service type Local port number

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-19

and send the Output message to your endpoint after you have established a
connection.

Note

When you are sending data over the Internet, you usually
need to insert a linefeed (unicodeLF) character in your
data. Most Internet data uses linefeed-carriage return pairs,
while the Newton uses only carriage returns. ◆

Sending Data With a UDP Connection 1

For UDP connections, you need to include the Inet UDP destination socket
('iuds') option to establish the destination of the UDP datagram. Your
UDP output specification must include two flags in the sendFlags slot: the
kPacket and kEOP flags. For example, the following code segment sends
the string “Hello World!” out over a UDP link.

local myUDPstreamOutputSpec := {

form: 'string,

sendFlags: 'kPacket+'kEOP,

}

local myUDPOptions :=

[{

label: "iuds",

type: 'option,

opCode: opSetCurrent,

result: nil,

form: 'template,

data:

{

arglist:

[

[130,43,2,2], // host address

7, // destination port number

C H A P T E R 1

Newton Internet Enabler

1-20 Using Newton Internet Enabler

],

typelist:

[

'struct,

['array, 'byte, 4],

'short

]

}

}];

try

ep:Output("Hello World!", myUDPOptions,

myUDPstreamOutputSpec);

onexception |evt.ex.comm| do

return :DoDisconnect();

Sending Data With a TCP Connection 1

For TCP links, you do not need to include any options in your Output
message, nor do you need to specify any sendFlags values in the output
specification frame. For example, the following code segment sends the
string “Hello World!” out over a TCP link.

local myTCPstreamOutputSpec := {

form: 'string,

}

try

ep:Output("Hello World!", nil, myTCPstreamOutputSpec);

onexception |evt.ex.comm| do

return :DoDisconnect();

The above example calls the application’s DoDisconnect function if any
communication exception occurs while sending the data.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-21

You can also send expedited data over a TCP link. Expedited data is a single
byte of data that gets sent immediately. The data byte gets inserted in front of
any data on the remote end that has been received but not yet processed. For
example, you might need to send out a break character in the middle of
transmitting a large amount of data. To do so, you use the Inet expedited
data option with your Output message. The expedited data option is
described on page 1-67.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about output specification frames and the Output
method.

Receiving Data 1

You use Newton Internet Enabler to receive data just as you would with any
Newton communications tool. Typically, this means that you set up an input
specification frame and send the SetInputSpec message to your endpoint.

Note

When you are receiving data from the Internet, you usually
need to strip the linefeed (unicodeLF) characters from your
data. Most Internet data uses linefeed-carriage return pairs,
while the Newton just uses the carriage return. ◆

Receiving Data With UDP 1

For UDP links, your input specification frame must include the kPacket
receive flag and must include useEOP:true in the termination slot. In
addition, you can include two options in the rcvOptions slot if you want
to: include the UDP source socket option to retrieve the address of the
datagram sender, and include the UDP destination socket option if you want
to retrieve the exact address to which the packet you received was sent. The
destination address might be other than your local address if the packet was
sent to a broadcast address.

The following code segment receives a datagram packet over a UDP link.

C H A P T E R 1

Newton Internet Enabler

1-22 Using Newton Internet Enabler

local streamInputSpec := {

form: 'string,

termination: {useEOP: true},

discardAfter: 565,

rcvFlags: kPacket,

rcvOptions: {

label: "iuss",

type: 'option,

opCode: opGetCurrent,

result: nil,

form: 'template,

data: {

arglist:

[

[0,0,0,0], // host address

0, // host port number

],

typelist: kPortAddrStruct,

[

'struct,

['array, 'byte, 4],

'short

]

}

},

inputScript: func(ep, data, terminator, options)

begin

// do something with data

end,

completionScript: func(ep, options, result)

begin

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-23

// skip error handling for cancelled requests

if result <> kCommAbortErr then

begin

print("Error: " && result);

ep:DoDisconnect();

end;

end,

}

try

ep:SetInputSpec(streamInputSpec);

onexception |evt.ex.comm| do

return :DoDisconnect();

The example input specification frame above tells Newton Internet Enabler
to receive a packet of data from the UDP link and provides two scripts: the
inputScript function to process normal completion of data reception and
the completionScript function to process unexpected termination of data
reception. In addition, this input spec includes a “get” of the UDP source
socket address, which will be filled in with the IP address of the host that
sent the datagram to your application.

WARNING

If you attempt to send or receive a packet larger than the
value specified in the discardAfter slot of your input
specification frame, a kCommErrBufferOverflow error
results and some data may be lost. The maximum size of a
UDP packet for Newton Internet Enabler is 565. ▲

Receiving Data With TCP 1

For TCP links, you do not need to include any options or specify any receive
flags in your input specification frame. For example, the following code
segment receives a carriage return-terminated string from a TCP connection.

C H A P T E R 1

Newton Internet Enabler

1-24 Using Newton Internet Enabler

local streamInputSpec := {

form: 'string,

termination: {endSequence: UnicodeCR},

inputScript: func(ep, data, terminator, options)

begin

// do something with data

end,

completionScript: func(ep, options, result)

begin

// skip error handling for cancelled requests

if result <> kCommAbortErr then

begin

print("Error: " && result);

ep:DoDisconnect();

end;

end,

}

try

ep:SetInputSpec(streamInputSpec);

onexception |evt.ex.comm| do

return :DoDisconnect();

The example input specification frame above tells Newton Internet Enabler
to terminate input upon receiving a Unicode carriage return character and
provides two scripts: the inputScript function to process normal
completion of data reception and the completionScript function to
process unexpected termination of data reception.

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-25

WARNING

Do not use the discardAfter slot in your input
specification for TCP connections. If you want to limit the
size of the data packet, specify the byteCount value in your
termination frame. ▲

You can also receive expedited data over a TCP link. When expedited data
arrives, your application is immediately notified: the link controller sends an
application event frame. The eventCode slot of this event frame has the
value kEventToolSpecific and the data slot is the byte that was
received.

See the chapter “Endpoint Interface” in Newton Programmer’s Guide for
detailed information about input specifications, the SetInputSpec method,
handling communications events, and other styles of receiving data with an
endpoint.

Disconnecting Your Endpoint 1

When you have finished using your endpoint, you need to disconnect,
unbind, and dispose of it. The following function shows you an example of
finishing your use of an endpoint.

MyApp.DoDisconnect := func()

begin

if ep then begin// ignore all disconnect errors

try

ep:Disconnect(true, nil);

onexception |evt.ex.comm| do

nil;

try

ep:UnBind(nil)

onexception |evt.ex.comm| do

nil;

try

C H A P T E R 1

Newton Internet Enabler

1-26 Using Newton Internet Enabler

ep:Dispose()

onexception |evt.ex.comm| do

nil;

end;

end;

Releasing Your Link 1

After your application is completely done with the link, or whenever you
will not be using the link for a long period of time (approximately 15
minutes or longer), you need to release it by calling the InetReleaseLink
function. If no other applications are using the link, the Newton system
software shuts it down.

You need to provide InetReleaseLink with a link ID, a callback function,
and a callback context frame:

InetReleaseLink(linkID, clientContext, clientCallback)

IMPORTANT

The clientContext value that you specify in your
InetReleaseLink call must match the clientContext value
that you previously specified in your call to the
InetGrabLink function for this link. Otherwise, an error
will occur. ▲

The status value in your callback is a status frame, as described in the section
“The Link Controller Status Frame” beginning on page 1-45. This frame
contains the current link status value and other information. In your
callback, you can determine the current status of the link after your release of
it has completed, which will depend upon its use by other applications.

Here is an example of a callback function for the InetReleaseLink
function:

myApp.ReleaseLinkCallback := func(linkID, stat, err)

begin

if stat.linkStatus = 'idle then

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-27

; // do something here

end;

Power Management and Internet Links 1

Whenever a link is active or a grablink is in progress, the Newton Internet
Enabler modifies the handling of power-down requests in the following two
ways:

■ The standard “power-down when idle” feature of the Newton is disabled.

■ If the user tries to power down with the power switch, the Newton
Internet Enabler displays a dialog asking the user if he or she really wants
to drop the link. If the user taps OK, the link is dropped and the Newton
is powered down. If the user taps Cancel, the link is retained and the
Newton remains powered.

Using the Domain Name Service Interface 1
You can use the Newton Internet Enabler domain name service functions to
translate between host name and Internet address representations. Newton
Internet Enabler provides the following domain name service global
functions:

■ the DNSCancelRequests function cancels any pending DNS requests.

■ the DNSGetAddressFromName function translates a domain name into
its corresponding Internet address.

■ the DNSGetMailAddress function translates a domain name into the
Internet address for a mail server that serves that domain.

■ the DNSGetMailServerNameFromDomainName function translates a
domain name into the domain name for a mail server that serves that
domain.

■ the DSNGetNameFromAddress function translates an Internet address
into its corresponding domain nam.

Each of the DNS global functions is described in the section “Domain Name
Service Functions and Methods” beginning on page 1-61.

C H A P T E R 1

Newton Internet Enabler

1-28 Using Newton Internet Enabler

You must supply a clientContext and clientCallback parameter to each of the
DNS functions, just as you do for the link controller functions. However, the
DNS callback functions are called with different parameters than are the link
controller functions.

The callback function for DNSCancelRequests receives no parameters.

The callback function for all of the other DNS functions receives two
parameters: an array of DNS results frames and a result code. Each results
frame contains a number of slots that describe the DNS operation that was
performed. The format of these parameters is described in the section “The
Domain Name Service Callback Function Format” beginning on page 1-50.

For example, the DNSGetAddressFromName function is declared as follows:

DNSGetAddressFromName(addr, clientContext, clientCallback)

An example of a callback for this function is shown here:

myApp.DNSGetAddrcallback := func(results, error)

begin

if error or length(results) < 1 then

begin

print("DNS error: " && error);

// do something with the error

return;

end;

// save the resolved address

myRemoteIpAddr := results[0].resultIPAddress;

end;

C H A P T E R 1

Newton Internet Enabler

Using Newton Internet Enabler 1-29

Using the Newton Internet Enabler Options 1
Table 1-2 describes the Newton Internet Enabler options. Each of these
options is described in detail in the section “Newton Internet Enabler
Options” beginning on page 1-67.

Table 1-2 Newton Internet Enabler options

Option name Description When to use

Expedited data transfer
('iexp')

For expedited
transmission of data
over a TCP link.

Set this option with an Output
call to transfer data on a TCP
endpoint.

Physical link identifier
('ilid')

To identify the link
ID to use.

Set this option at endpoint
instantiation time.

Local port
('ilpt')

To set the local port
number for TCP
binds.

Set this option if you are
binding to do a Listen (at
endpoint instantiation or bind
time). You don’t need to set this
option for a Connect.

To set the local port
number for UDP
binds.

Set this option at endpoint
instantiation or bind time.

To retrieve the local
port number used for
TCP or UDP.

Retrieve the value of this option
when you are connecting,
sending, or receiving data.

Inet profile
('iprf')

To retrieve the local
host and gateway
host IP addresses.

At any time after the link is
established.

TCP remote socket
('itrs')

To set the socket to
which TCP connects.

Set the value of this option at
before using the connection (at
endpoint instantiation, bind, or
connect time).

C H A P T E R 1

Newton Internet Enabler

1-30 Newton Internet Enabler Interface Reference

Newton Internet Enabler Interface Reference 1

This section describes the constants, data types, methods, and functions that
you use with Newton Internet Enabler.

Constants 1
This section describes the constants that you use with Newton Internet
Enabler.

To retrieve the sender
address for data
received over a TCP
link.

Get the value of this option
when listening for data on a
TCP connection.

Transport service type
('itsv')

To set the transport
service type (TCP or
UDP).

Set this option at endpoint
instantiation time.

UDP destination socket
('iuds')

To set the destination
address for data
being sent over a
UDP link.

Set this option when sending
data with a UDP connection.

To retrieve the
destination address
for data received
over a UDP link.

Get this option when listening
for data on a UDP connection.

UDP source socket
('iuss')

To retrieve the source
address for data
received over a UDP
link.

Get the value of this option
when listening for data on a
UDP connection.

Table 1-2 Newton Internet Enabler options (continued)

Option name Description When to use

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-31

Status Code Constants 1

The Newton system software uses the following status code symbols to
convey the status of a Newton Internet Enabler operation:
'idle

'initializing

'connecting

'login

'connected

Constant descriptions

'idle No link is established.
'initializing Setting up for connecting.
'connecting In the process of connecting.
'login Performing login script.
'connected The link is established.

Transport Service Type Constants 1

You can use the following constants to specify transport service types in Inet
tool option requests:

constant kTCP := 1;

constant kUDP := 2;

Constant descriptions

kTCP Use TCP transport service.
kUDP Use UDP transport service.

Link Controller Error Codes 1

The high-level link controller can generate the errors described in this section.

constant kInetErrNoSuchLinkID := -60501;

constant kInetErrLinkDisconnected := -60504;

constant kInetErrConnectLinkFailed := -60505;

C H A P T E R 1

Newton Internet Enabler

1-32 Newton Internet Enabler Interface Reference

Constant descriptions

kInetErrNoSuchLinkID
The specified link identifier does not exist.

kInetErrnLinkDisconnected
The link has been disconnected.

kInetErrConnectLinkFailed
The link could not connect.

DNS Error Codes 1

This section describes the error codes that the DNS tool can generate.

constant kDNSErrNoAnswerFoundYet -60751;

constant kDNSErrInternalErr -60752;

constant kDNSErrNameSyntaxErr -60791;

constant kDNSErrNoNameServer -60794;

constant kDNSErrAuthNameErr -60795;

constant kDNSErrNoAnswerErr -60796;

constant kDNSErrNonexistentDomain -60797;

constant kDNSErrOutOfMemory -60798;

constant kDNSErrCouldNotContactServer -60800;

constant kDNSErrNoServersAvailable -60801;

constant kDNSErrRequestFormatErr -60802;

constant kDNSErrServerInternalErr -60803;

constant kDNSErrServerNotImplemented -60804;

constant kDNSErrServerRefused -60805;

constant kDNSErrUnknownServerErr -60806;

constant kDNSErrNoResponseFromServer -60814;

constant kDNSErrNoResponseFromAnyServer -60815;

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-33

Constant descriptions

kDNSErrNoAnswerFoundYet
The answer for the question has not yet been found.

kDNSErrInternalErr
Internal DNS tool error.

kDNSErrNameSyntaxErr
The name in the DNS request is not valid.

kDNSErrNoNameServer
The option specification does not contain a name server.

KDNSErrAuthNameErr
The domain does not exist.

kDNSErrNoAnswerErr
No answers available for request; this could be due to a
domain that does not exist.

kDNSErrNonexistentDomain
The domain name does not exist.

kDNSErrOutOfMemory
DNS tool out of memory.

kDNSErrCouldNotContactServer
Could not connect to the current DNS server

kDNSErrNoServersAvailable
Could not connect to any of the listed DNS servers.

kDNSErrRequestFormatErr
The DNS server did not like the format of the request,
which could indicate an invalid domain name.

kDNSErrServerInternalErr
An internal error occurred in the DNS server.

kDNSErrServerNotImplemented
The DNS server does not support the specified type of
request.

kDNSErrServerRefused
The DNS server refused to answer the client’s query.

kDNSErrUnknownServerErr
The DNS server returned an error code that is not
recognized.

C H A P T E R 1

Newton Internet Enabler

1-34 Newton Internet Enabler Interface Reference

kDNSErrNoResponseFromServer
No response from the current server

kDNSErrNoResponseFromAnyServer
No response from any of the available DNS servers.

Newton Internet Enabler Lower-Level Tool Errors 1

The Newton Internet Enabler lower-level erors are separated into five
sections:

■ Inet tool errors

■ application-related errors

■ UDP errors

Inet Tool Errors 1

This section describes the errors that the built-in Inet tool can generate.

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. ◆

constant kInetToolErrBindFailed := -60001;

constant kInetToolErrIPBindFailed := -60002;

constant kInetToolErrPushModule := -60004;

constant kInetToolErrIlink := -60005;

constant kInetToolErrNetActivateReq := -60006;

constant kInetToolErrTCPBind := -60007;

constant kInetToolErrGetRequest := -60008;

constant kInetToolErrPutRequest := -60009;

constant kInetToolErrConnect := -60010;

constant kInetToolErrDlAttach := -60011;

constant kInetToolErrBind := -60012;

constant kInetToolErrOpenLink := -60013;

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-35

constant kInetToolErrUnlink := -60014;

constant kInetToolErrOutOfPhase := -60015;

constant kInetToolErrAddRoute := -60016;

constant kInetToolErrListen := -60017;

constant kInetToolErrLinkNotOpened := -60018;

constant kInetToolErrDriverNotOpened := -60019;

constant kInetToolErrStreamNotOpened := -60020;

constant kInetToolErrBindReqFailed := -60021;

constant kInetToolErrConnResReqFailed := -60022;

C H A P T E R 1

Newton Internet Enabler

1-36 Newton Internet Enabler Interface Reference

Constant descriptions

kInetToolErrBindFailed
The bind operation failed at the lowest level.

kInetToolErrIPBindFailed
The IP layer bind operation failed.

kInetToolErrPushModule
Internal communications stack configuration error.

kInetToolErrIlink
Internal communications stack configuration error.

kInetToolErrNetActivateReq
Internal communications stack configuration error.

kInetToolErrTCPBind
The TCP layer bind operation failed.

kInetToolErrGetRequest
The get request resulted in an error.

kInetToolErrPutRequest
The put request resulted in an error.

kInetToolErrConnect
The connect request resulted in an error.

kInetToolErrDlAttach
Internal communications stack configuration error.

kInetToolErrBind
Internal communications stack configuration error.

kInetToolErrOpenLink
Internal communications stack configuration error.

kInetToolErrUnlink
Internal communications stack configuration error.

kInetToolErrOutOfPhase
Internal communications stack configuration error (the
stack layers are out of sync).

kInetToolErrAddRoute
Internal communications stack configuration error.

kInetToolErrListen
Internal communications stack configuration error.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-37

kInetToolErrLinkNotOpened
Internal communications stack configuration error.

kInetToolErrDriverNotOpened
Internal communications stack configuration error.

kInetToolErrStreamNotOpened
Internal communications stack configuration error.

kInetToolErrBindReqFailed
The bind request failed.

kInetToolErrConnResReqFailed
Internal communications stack configuration error.

Application-related Errors 1

This section describes the Inet errors that are related to your application.

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. ◆

constant kInetToolErrMemAlloc := -60023;

constant kInetToolErrMsgType := -60024;

constant kInetToolErrNoDevice := -60025;

constant kInetToolErrllegalOpenOnStream := -60026;

constant kInetToolErrReqInInvalidState := -60027;

constant kInetToolErrPrimitiveTooSmall := -60028;

constant kInetToolErrPrimitiveOutOfRange := -60029;

constant kInetToolErrPrimitiveOnInvalidStr := -60030;

constant kInetToolErrMessageTooLong := -60031;

constant kInetToolErrNetworkAlreadyActive := -60032;

constant kInetToolErrNetworkNumberInvalid := -60033;

constant kInetToolErrUnsupportedIoctl := -60034;

constant kInetToolErrStreamAlreadyAttached := -60035;

constant kInetToolErrUnknownMuxIndex := -60036;

C H A P T E R 1

Newton Internet Enabler

1-38 Newton Internet Enabler Interface Reference

constant kInetToolErrNetworkIsInactive := -60037;

constant kInetToolErrBogusConnection := -60038;

constant kInetToolErrInvalidBillingMode := -60039;

constant kInetToolErrNoTrigSelectedInAlarm := -60040;

constant kInetToolErrInvalidTrigSize := -60041;

constant kInetToolErrInvalidConnectionRef := -60042;

constant kInetToolErrIlegalMdataInPrim := -60043;

constant kInetToolErrMissingMdataInPrim := -60044;

constant kInetToolErrInvalidSegmentedPrim := -60045;

constant kInetToolErrInvalidNPIVersion := -60046;

constant kInetToolErrInvalidAddress := -60047;

constant kInetToolErrOutOfTCPPortNumbers := -60048;

constant kInetToolErrSocketInUse := -60049;

constant kInetToolErrReservedPortNumber := -60050;

constant kInetToolErrExpDataNotSupported := -60051;

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-39

Constant descriptions

kInetToolErrMemAlloc
Requested memory could not be allocated.

kInetToolErrMsgType
Internal communications stack configuration error.

kInetToolErrNoDevice
Internal communications stack configuration error: no
stream available.

kInetToolErrllegalOpenOnStream
Internal communications stack configuration error.

kInetToolErrReqInInvalidState
Internal communications stack configuration error.

kInetToolErrPrimitiveTooSmall
Internal communications stack configuration error.

kInetToolErrPrimitiveOutOfRange)
Internal communications stack configuration error.

kInetToolErrPrimitiveOnInvalidStr
Internal communications stack configuration error.

kInetToolErrMessageTooLong
Internal communications stack configuration error.

kInetToolErrNetworkAlreadyActive
Internal communications stack configuration error.

kInetToolErrNetworkNumberInvalid
Internal communications stack configuration error.

kInetToolErrUnsupportedIoctl
Internal communications stack configuration error.

kInetToolErrStreamAlreadyAttached
Internal communications stack configuration error.

kInetToolErrUnknownMuxIndex
Internal communications stack configuration error.

kInetToolErrNetworkIsInactive
Internal communications stack configuration error.

kInetToolErrBogusConnection
Internal communications stack configuration error.

C H A P T E R 1

Newton Internet Enabler

1-40 Newton Internet Enabler Interface Reference

kInetToolErrInvalidBillingMode
Internal communications stack configuration error.

kInetToolErrNoTrigSelectedInAlarm
Internal communications stack configuration error.

kInetToolErrInvalidTrigSize
Internal communications stack configuration error.

kInetToolErrInvalidConnectionRef
Internal communications stack configuration error.

kInetToolErrIlegalMdataInPrim
Internal communications stack configuration error.

kInetToolErrMissingMdataInPrim
Internal communications stack configuration error.

kInetToolErrInvalidSegmentedPrim
Internal communications stack configuration error.

kInetToolErrInvalidNPIVersion
Internal communications stack configuration error.

kInetToolErrInvalidAddress
Internal communications stack configuration error.

kInetToolErrOutOfTCPPortNumberss
Internal communications stack configuration error.

kInetToolErrSocketInUse
Internal communications stack configuration error.

kInetToolErrReservedPortNumber
Internal communications stack configuration error.

kInetToolErrExpDataNotSupported
Internal communications stack configuration error.

UDP Errors 1

This section describes the UDP-related errors that the built-in Inet tool can
generate.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-41

Note

Some of the errors in this section are internal
communications stack configuration or operation errors. If
you receive one of these errors, please contact the Newton
Developer Technical Support team. ◆

constant kInetToolErrRedundentRequest := -60052;

constant kInetToolErrUnexpectedDLPrim := -60053;

constant kInetToolErrUnexpectedTPIPrim := -60054;

constant kInetToolErrUnexpectedNPIPrim := -60055;

constant kInetToolErrUnknownTPIErrorCode := -60056;

Constant descriptions

kInetToolErrRedundentRequest
Internal communications stack configuration error.

kInetToolErrUnexpectedDLPrim
Internal communications stack configuration error.

kInetToolErrUnexpectedTPIPrim
Internal communications stack configuration error.

kInetToolErrUnexpectedNPIPrim
Internal communications stack configuration error.

kInetToolErrUnknownTPIErrorCode
Internal communications stack configuration error.

Inet Tool-Specific Errors 1

This section describes the errors that relate to the Inet tool disconnecting
unexpectedly.

constant kInetErrStreamInoperative := -60057;

Constant descriptions

kInetErrStreamInoperative
The communications connection shut down due to a
fatal error.

C H A P T E R 1

Newton Internet Enabler

1-42 Newton Internet Enabler Interface Reference

Newton Internet Enabler Events 1
The Newton Internet Enabler generates some events that you can handle in
the EventHandler method of your endpoints. The EventHandler
method, which is described in the chapter “Endpoint Interface” of Newton
Programmer’s Guide, receives a single parameter, which is an event frame. The
slots of the event frame are as follows:

eventCode An integer event code.
data An integer representing event data.
serviceId A string representing the communication tool that

originated the event. For example, "mods" identifies the
modem tool.

time An integer representing the time when the event
occurred. This is the number of ticks since the system
was last restarted, not including time when it was
turned off.

When the Newton Internet Enabler sends an event to your application, the
serviceId is 'inet'. The event codes and data that Newton Internet
Enabler can send are shown in Table 1-3.

Table 1-3 Newton Internet Enabler Application Events

Event code Data value Description

kEventToolSpecific An error code; currently, this is
always the value:
kInetErrStreamInoperative

Sent to your endpoint
when the connection
becomes inoperative due
to a fatal error.

kEventToolSpecific A byte of data received for the
application.

Sent to your endpoint
when an expedited data
byte arrives. This is only
applicable to endpoints
using TCP.

kCommToolEventDisconnected none Sent to your endpoint if the
remote side disconnects a
TCP connection.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-43

Since the eventCode slot has the same value (kEventToolSpecific) in
the first two cases shown in Table 1-3, you must check the value of the data
slot to determine what has happened:

■ if the data slot value is less than zero, you know that your connection has
closed down due to an error. The data slot value is the error code.

■ otherwise, you know that your application has just received a byte of
expedited data. The data slot value is the byte of expedited data that has
just been received.

For more information on receiving expedited data, see the section “Receiving
Data With TCP” beginning on page 1-23.

Handing TCP Disconnect Events 1

If the remote sides disconnects a TCP connection, your endpoint generates a
disconnect event. However, you might still need to process data that has
been received and buffered prior to the disconnect. To process the buffered
data, you need to post input specifications until you get the error
kCommErrNotConnected.

Note

You must disconnect and unbind your endpoint event if you
receive a disconnect (kCommToolEventDisconnected)
event. ◆

Newton Internet Enabler Function Parameter Information1
Many of the Newton Internet Enabler functions use one or more of the
parameter types described here.

The Link Identifier Parameter 1

The link identifier parameter, which is used by a number of the link
controller functions, defines the link that you want to use for a link controller
operation. If you specify nil for the link identifier, Newton Internet Enabler
substitutes the default link identifier.

C H A P T E R 1

Newton Internet Enabler

1-44 Newton Internet Enabler Interface Reference

Users define the default link ID to use in the Internet Setup application.
Whenever you successfully call the InetGrabLink function, the link ID that
you supplied to that function will automatically become the default link ID.
Under most circumstances, you should specify nil as the value of the link
identifier to use the default link ID as established by the user.

The Client Context Parameter 1

The client context parameter, which is used by a number of the link
controller functions, is a reference to a frame. The referenced frame must
contain the callback function that is defined in the client callback parameter.

Note

You must provide the same client context frame to some of
the Newton Internet Enabler functions that are called in
pairs. For example, the InetCancelLink function can only
cancel a link if the clientContext parameter that you pass into
InetCancelLink matches the clientContext parameter that
you previously passed into InetGrabLink. ◆

The Client Callback Parameter 1

The client callback parameter, which is used by a number of the Newton
Internet Enabler functions, is the symbol for a function. This function must
be defined in the frame that is defined by the client context parameter.

In most cases, the Newton system software calls your callback function upon
completion of its operations. In some cases, notably the InetGrabLink
function, the Newton system software calls your callback function repeatedly
during the operation to keep you informed of the status.

If you are calling a link controller function, the declaration of your callback
function must match the specification described in the next section, “The
Link Controller Callback Function Format.”

If you are calling a domain name service function, the declaration of your
callback function must match the specification in the section “The Domain
Name Service Callback Function Format” beginning on page 1-50.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-45

The Link Controller Callback Function Format 1

The callback function that you supply to each link controller call must be
declared with the following format:

func callBackFcn(linkId, statusFrame, err);

The system software calls callBackFcn after the Newton Internet Enabler
function has completed.

statusFrame A frame with the format shown in the next section, “The
Link Controller Status Frame.” The statusFrame provides
information on the current state of the link.

err The operation result. If the value is nil, the operation
was successful; otherwise, the value is one of the error
codes shown in the section “Newton Internet Enabler
Lower-Level Tool Errors” on page 1-34.

The Link Controller Status Frame 1

The link controller status frame contains a slot that conveys link status
information to you. This frame is designed to work closely with views based
on the protoStatusTemplate view, which is described in the Transport
Interface chapter of Newton Programmer’s Guide.

Note that the status frame can have other slots in it; however, only the
linkStatus slot is available for application use.

Slot descriptions

linkStatus A symbol that describes the current status of the link.
This is one of the values described in the section “Status
Code Constants” on page 1-31.

The following is an example of a link controller status frame:

{

linkStatus: 'connected

}

C H A P T E R 1

Newton Internet Enabler

1-46 Newton Internet Enabler Interface Reference

The Link Entry Information Frame 1

The Newton Internet Enabler accesses link entry information that is stored in
an internal soup. Each entry in this soup defines link configuration
information and is represented by a link entry information frame. An
example of a link entry information frame follows:

{

linkID: 0,

tags: ['Inet],

setupName: "My dial-up",

physicalLayer: 'modem,

linkLayer: 'PPP,

localAddress: [205,149,167,179],

localAddressFixed: nil,

gatewayAddress: [204,156,128,1],

gatewayAddressFixed: nil,

phoneNumber: "(408) 555-1234",

userName: "",

passWord: "",

dnsServerAddress: [204,156,128,1],

defaultDomain: ".",

loginInfo: {interpreterSymbol: 'default,

 loginScriptTimeout: 60,

 loginInstructions: [

 {type: 'waitFor, data: "ogin:"},

 {type: 'userName},

 {type: 'sendCR},

 {type: 'waitFor, data: "word"},

 {type: 'password},

 {type: 'sendCR},

 {type: 'waitFor, data:"ing..."},

],

}

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-47

}

C H A P T E R 1

Newton Internet Enabler

1-48 Newton Internet Enabler Interface Reference

Slot descriptions

linkID The (integer) ID for this link. This ID is generated by the
link controller.

tags Reserved for internal use. Do not modify.
setupName The name of this link setup entry.
physicalLayer The symbol for which physical layer to use when

connecting. Use either 'modem or 'serial.
linkLayer The symbol for which link-layer protocol to use for this

link. Use either 'PPP or 'SLIP.
localAddress Optional. The manually-entered local IP address of the

Newton.
localAddressFixed True if a fixed local address is required, nil if not.
gatewayAddress Optional. The IP address of the gateway host to which

the Inet tool connects.
gatewayAddressFixed

True if a fixed host address is required, nil if not.
phoneNumber Optional. The phone number for the modem to dial.
userName Optional. The user name to use as the account name for

login scripts.
passWord Optional. The password to use as the account password

for login scripts.
dnsServerAddress The DNS server IP address.
defaultDomain Optional. The default DNS domain
loginInfo A frame specifying the login information. This frame

contains the following three slots:
interpreterSymbol A symbol identifying which

interpreter to use. Use 'default
for the default interpreter.

loginScriptTimeout The number of seconds to wait for
input.

loginInstructions An array of frames interpreted by
the default interpreter. The frames
are described in the next section.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-49

Login Script Frames 1

The default login script interpreter accepts an array of frames, each of which
must have a 'type slot that specifies the type of information contained in
the frame. Table 1-4 shows the frame types that you can use in your login
scripts.

Table 1-4 Login script frames

Frame format Description

{type: 'waitFor,
 data: "data to wait for"}

Waits for the string in the data slot. The string can
contain any Unicode character. The string is
converted to ASCII using the standard Macintosh
encoding.

{type: 'send,
 data: "data to send"}

Sends the string specified in the data slot. The
string can contain any Unicode character. The string
is converted to ASCII using the standard Macintosh
encoding. Note that a newline is not automatically
sent.

{type: 'sendCR} Sends a newline (0x10).

{type: 'pause, data:1} Pauses the input script for the number of seconds
specified in the data slot.

{type: 'userName} Sends the string in the userName slot of the link
entry information frame. Note that a newline is not
automatically sent.

C H A P T E R 1

Newton Internet Enabler

1-50 Newton Internet Enabler Interface Reference

The Domain Name Service Callback Function Format 1

The callback function for the DNSCancelRequests function does not
receive any parameter values.

The callback function that you supply to each of the other domain name
service calls must be declared with the following format:

func callBackFcn(resultsArray, resultCode);

The system software calls callBackFcn after the Newton Internet Enabler
function has completed.

resultsArray An array of zero or more DNS results frames. The
format of a DNS results frame is described in the next
section, “The DNS Results Frame.”

resultCode One of the result codes described in the section “DNS
Error Codes” on page 1-32.

{type: 'password} Sends the string in the password slot of the link
entry information frame. Note that a newline is not
automatically sent.

{type: 'localAddress} Waits for and reads in an IP address. The value of
the link entry frame’s localAddress slot is
overridden with this address value. Use with SLIP
connections to obtain the dynamically assigned
address.

{type: 'gatewayAddress} Waits for and reads in an IP address. The value of
the link entry frame’s gatewayAddress slot is
overridden with this address value. Use with SLIP
connections to obtain the dynamically assigned
address.

Table 1-4 Login script frames (continued)

Frame format Description

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-51

The DNS Results Frame 1

The DNS results frame contains a number of slots that describe the DNS
operation. Different slot values are filled in by each of the DNS operations.
The possible slot types are shown here:

{

type resultType,
targetDomainName domainNameString,
resultDomainName domainNameString,
targetIPAddress addressArray,
resultIPAddress addressArray

}

Each results frame contains a type slot and at least one result slot. Most
results frames contain the targetDomainName slot; however, this is not
guaranteed. Table 1-5 shows which slot is guaranteed to be valid for each
DNS operation.

As you can see in Table 1-5, if the operation results in a domain name, the
results frame contains one or more resultDomainName slots. If the
operation results in an IP address, the results frame will instead contain one
or more resultIPAddress slots.

For example, the DNSGetAddressFromName function returns a results array
that looks something like this:

Table 1-5 Result slots for each DNS operation

DNS operation Results frame slot

DNSGetAddressFromName resultIPAddress

DNSGetNameFromAddress resultDomainName

DNSGetMailServerNameFromDomainName resultDomainName

DNSGetMailAddressFromName resultIPAddress

C H A P T E R 1

Newton Internet Enabler

1-52 Newton Internet Enabler Interface Reference

[{

type kDNSAddressType,

targetDomainName "newton.apple.com.",

resultIPAddress [155,227,54,3]

}]

In contrast, the DNSGetNameFromAddress function returns a results array
that looks something like this

[{

type kDNSDomainNameType,

targetDomainName "newton.apple.com.",

resultIPAddress [155,227,54,3]

}]

Some DNS operations return a results array that contains more than one
results frame. For example, a mail exchange operation can generate multiple
mail exchange results frames.

The value types for each frame type are described below.

Slot descriptions

resultType The type of result contained in the frame. This is either
kDNSAddressType or kDNSDomainNameType.

If the value is kDNSAddressType, the operation that
generated this result frame resulted in an IP address; for
example, the DNSGetAddressFromName function.

If the value is kDNSDomainNameType, the operation
that generated this result frame resulted in a domain
name string; for example, the
DNSGetNameFromAddress function.

domainNameString The domain name used or resulting from the operation.
For example "newton.apple.com.".

addressArray The IP address, specified as an array of four bytes. For
example, [155,227,54,3].

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-53

Link Controller Functions and Methods 1
This section describes the link controller functions and methods.

InetAddNewLinkEntry 1

linkID InetAddNewLinkEntry(newLinkInfo)

Installs a new link information entry on the user’s Newton and returns the
ID assigned to the entry.

newLinkInfo A link entry information frame, as described in “The
Link Entry Information Frame” on page 1-46.

You can use the InetAddNewLinkEntry function to install a new link
information entry in the Internet setup soup. The new link entry is created
using the information supplied in the newLinkInfo frame. A new linkID is
allocated for the entry. That link ID is returned as the function value.

InetCancelCurrentRequest 1

InetCancelCurrentRequest(linkId)

Cancels any active request on the specified link.

linkId The ID of the link that you want to cancel. Specify nil
to use the default link ID.

The InetCancelCurrentRequest function cancels any active requests on
the link specified by linkId.

InetCancelLink 1

InetCancelLink(linkId, clientContext, clientCallback)

Cancels an InetGrabLink operation that is in progress.

linkID The ID of the link that you want to cancel. Specify nil
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

C H A P T E R 1

Newton Internet Enabler

1-54 Newton Internet Enabler Interface Reference

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The InetCancelLink function cancels an InetGrabLink request that is in
progress.

The InetGrabLink function is described on page 1-58.

InetDisconnectLink 1

InetDisconnectLink(linkId, clientContext, clientCallback)

Disconnects a link no matter how many clients are using the link.

linkID The ID of the link that you want to cancel. Specify nil
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The InetDisconnectLink function disconnects a link directly without
needing to close all of the applications that are using it.

WARNING

The InetDisconnectLink function is intended for use
only by special purpose utility programs. Do not use this
function unless you are certain that it the right thing to do.

▲

InetDisplayStatus 1

statusView InetDisplayStatus(linkId, statusView, status)

Displays status information about a link on the user’s Newton screen.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-55

linkID The ID of the link for which you want to display status
information. This must be an active link. Specify nil to
use the default link ID.

statusView The view to use for displaying the status. The view
must be based on protoStatusTemplate.

If you provide a template, InetDisplayStatus opens
the view for your. If you supply nil as the value of this
parameter, InetDisplayStatus creates and opens a
new view for you.

status A status frame, such as the one passed to your
InetGrabLink callback function. The format of this
frame is described in the section “The Link Controller
Status Frame” beginning on page 1-45.

If you supply nil as the value of this parameter and
statusView is not nil, InetDisplayStatus removes
the status display from the screen.

The InetDisplayStatus function displays link status information on the
Newton screen. The view also contains a Stop button that the user can tap to
cancel a grab link operation. If the grab gets cancelled, you can keep the view
open and continue to display your own application status. To do so, follow
these steps:

1. Set the value of the appSymbol slot in the status view to reference your
application. For example:

myStatusView.appSymbol := kAppSymbol;

2. Implement a cancel script in your base view. When the user taps the Stop
button, the status view calls a 'CancelScript(reason) script in your
base view. You can implement this script to respond to the stop button.

The InetDisplayStatus function returns the view that it used to display
the status. You can use this for future calls to this function.

C H A P T E R 1

Newton Internet Enabler

1-56 Newton Internet Enabler Interface Reference

Note

To create a new status view for display on the screen, specify
nil as the value of the statusView parameter. Newton Internet
Enabler will create the view and return it as the function
value.

To remove the status view from the screen, specify nil as
the value of the status parameter and specify a view (not
nil) as the value of the statusView parameter. ◆

InetGetAllLinksStatus 1

linksStatusFrame InetGetAllLinksStatus()

The InetGetAllLinksStatus function returns a frame that specifies the
status of all known links. If there are no available links, the
InetGetAllLinksStatus function returns nil or a frame containing
empty arrays.

WARNING

Since the user can add or remove available links at any time
by using the Internet Setup application, you must be careful
about caching the results of the InetGetAllLinksStatus
function. ▲

The linksStatusFrame contains three slots, each of which is an array with one
entry for each available link.

Slot descriptions

LinkIDS An array that contains the ID of each available link.
statuses An array that contains the status code for each available

link. Each entry in this array is a status code value, as
described in the section “Status Code Constants” on
page 1-31.

names An array that contains the name for each available link.
Each entry in this array is the string name that the user
specified when defining the link configuration in the
Internet Setup application.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-57

The following is an example of the linksStatusFrame:

{

LinkIDs [1,2,3]

statuses ['connected, 'idle, 'idle],

names ["Best", "Scruznet", "Compuserve"]

}

Note

The InetGetAllLinksStatus function is a synchronous
call that raises an exception if it encounters any problems. ◆

InetGetDefaultLinkID 1

linkID InetGetDefaultLinkID()

The InetGetDefaultLinkID function returns the ID of the default link.
This is the ID that the Newton system software uses when you specify nil
as the value of the linkID parameter for one of the other link controller
functions.

InetGetLinkEntry 1

linkEntry InetGetLinkEntry(linkID)

Returns the link entry information frame associated with linkId.

linkID The ID of the link. Specify nil to use the default link ID.

The InetGetLinkEntry function returns the link entry information frame
for the link linkID. For information about the format of link entry
information frames, see “The Link Entry Information Frame” on page 1-46.

InetGetLinkStatus 1

InetGetLinkStatus(linkID)

Returns the status of a link.

linkID The ID of the link. Specify nil to use the default link ID.

C H A P T E R 1

Newton Internet Enabler

1-58 Newton Internet Enabler Interface Reference

The InetGetLinkStatus function returns the status of the link linkID. The
status value is one of the status code constants, as described in the section
“Status Code Constants” on page 1-31..

Note

The InetGetLinkStatus function is a synchronous
function that raises an exception if it encounters any
problems. ◆

InetGrabLink 1

InetGrabLink(linkId, clientContext, clientCallback)

Provides access to a link.

linkID The ID of the link that you want to access. Specify nil
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The InetGrabLink function attempts to access a link and calls your
callback function with the status and error code for that operation.

The Newton system software calls your clientCallback function repeatedly
while attempting to connect, supplying you with the current status. The
InetGrabLink operation does not complete until the returned status is
'connected.

If the InetGrabLink operation fails, the err parameter to the clientCallback
function indicates the reason. Otherwise, the value of the err parameter is
nil.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-59

InetOpenConnectionSlip 1

view InetOpenConnectionSlip(linkId, clientContext, clientCallback)

Opens a connection slip for the link. The user can change link information
with the slip.

linkID The ID of the link for which you want to open a
connection slip. Specify nil to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientSlipCallback A client callback function that receives a single
parameter. This parameter is a symbol with one of the
following values: 'connect or 'close.

The InetOpenConnectionSlip function displays a connection slip on the
screen to allow the user to change to a different link or override the current
worksite or phone number information. The user can complete the slip by
tapping the Connect button or by tapping the Close box.

Your clientCallback function is called after the slip has been completed by the
user. If your callback is called with the 'close symbol, it means that the
user has canceled the connection by tapping the Close box in the slip. If your
callback is called with the 'connect symbol, it means that the user has
tapped the Connect button in the slip and that you should call
InetGrabLink to proceed with the connection process.

If the link is already open, InetOpenConnectionSlip does not open a
slip. In this case, InetOpenConnectionSlip calls your callback function
with 'connect, which means that you can proceed as if the user had tapped
the Connect button.

The InetOpenConnectionSlip function returns the open slip view or nil
if it does not open a slip.

C H A P T E R 1

Newton Internet Enabler

1-60 Newton Internet Enabler Interface Reference

IMPORTANT

Apple recommends that you call
InetOpenConnectionSlip before calling InetGrabLink
to allow users the opportunity to change the connection
settings. ▲

InetReleaseLink 1

InetReleaseLink(linkId, clientContext, clientCallback)

Relinquishes access to a link.

linkID The ID of the link that you want to release. Specify nil
to use the default link ID.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Link Controller Callback Function Format” on
page 1-45.

The InetReleaseLink function releases your access to a link. If the link
does not have any additional clients, it may close down.

Note

If the user has enabled a release link timeout in the link
entry, then InetReleaseLink does not necessarily drop
the link, even if it does not have any additional clients.
When the count goes to zero and a release link timeout has
been enabled, the Newton Internet Enabler software
displays an indicator on the user’s screen (a blinking star at
the top center of the screen). The user can tap that indicator
to open a slip that can be used to release the link. If another
InetGrabLink call is issued for the link before the timeout
completes, the link is not released. ◆

Your clientCallback function is called after the link has been released. The
status of the link at that time will depend on its use by other applications.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-61

IMPORTANT

Apple recommends that you call InetReleaseLink
whenever you no longer need to perform communications
over the link for fifteen minutes or longer. ▲

InetSetDefaultLinkID 1

InetSetDefaultLinkID(linkId)

Establishes which link is the default link.

linkID The ID of the link that you want to become the default
link ID.

The InetSetDefaultLinkID function establishes linkId as the default link
ID. The Newton Internet Enabler software uses the default link ID whenever
you pass nil as the value of a linkID parameter. For more information about
the default link ID, see “The Link Identifier Parameter” on page 1-43.

Domain Name Service Functions and Methods 1
This section describes the functions and methods that you can use to access
the domain name service.

DNSCancelRequests 1

DNSCancelRequests(clientContext, clientCallback)

Cancels outstanding domain name server requests.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function. This function is called with
no parameters, in contrast to the other DNS callback
functions.

The DNSCancelRequests function cancels any outstanding domain name
service requests that have been made by the client with context clientContext.

C H A P T E R 1

Newton Internet Enabler

1-62 Newton Internet Enabler Interface Reference

You must supply the same value for clientContext as you did when you made
the DNS request.

Newton Internet Enabler will not call the callback functions for any DNS
requests that get cancelled.

WARNING

The callback function that you supply to
DNSCancelRequests does not have any parameters. This
is different from the other DNS callback functions. ◆

DNSGetAddressFromName 1

DNSGetAddressFromName(nameString, clientContext,clientCallback)

Translates a domain name into its corresponding Internet address.

nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Domain Name Service Callback Function Format”
on page 1-50.

The DNSGetAddressFromName function resolves the domain name
nameString into an IP address. DNSGetAddressFromName fills in the
resultIPAddress slot in a DNS results frame, as described in the section
“The Domain Name Service Callback Function Format” beginning on
page 1-50, and calls your callback function with the result code and that
frame as parameters. The following is an example of a results frame for the
DNSGetAddressFromName function:

{

type kDNSAddressType,

targetDomainName "newton.apple.com.",

resultIPAddress [155,227,54,3],

}

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-63

The result code is nil if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period ('.') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGetAddressFromName attempts to complete the name as
follows:

■ DNSGetAddressFromName first appends a period to a copy of
nameString and attempts name resolution with that string.

■ If that request is not successful, DNSGetAddressFromName appends the
local domain name and a period to a copy of nameString and attempts
name resolution with that string.

DNSGetMailAddressFromName 1

DNSGetMailAddressFromName(nameString,clientContext,clientCallback)

Translates a domain name into the Internet address for a mail server that
serves that domain.

nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Domain Name Service Callback Function Format”
on page 1-50.

The DNSGetMailAddressFromName function returns the IP address of a
mail server that serves the domain specified by nameString.
DNSGetMailAddressFromName fills in the resultIPAddress slot in a
DNS results frame, as described in the section “The Domain Name Service
Callback Function Format” beginning on page 1-50, and calls your callback
function with the result code and that frame as parameters. The following is
an example of a results frame for the DNSGetMailAddressFromName
function:

C H A P T E R 1

Newton Internet Enabler

1-64 Newton Internet Enabler Interface Reference

{

type kDNSAddressType,

targetDomainName "mail.newton.apple.com.",

resultIPAddress [155,227,54,3],

}

The result code is nil if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period ('.') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGetAddressFromName attempts to complete the name as
follows:

■ DNSGetMailAddressFromName first appends a period to a copy of
nameString and attempts name resolution with that string.

■ If that request is not successful, DNSGetMailAddressFromName
appends the local domain name and a period to a copy of nameString and
attempts mail server resolution with that string.

If there is more than one mail server for the domain specified by nameString,
the results array contains multiple resultDomainName frames, one for each
mail server. The frames are ordered in the results frame according to the
preference order of the mail exchange resource record.

DNSGetMailServerNameFromDomainName 1

DNSGetMailServerNameFromDomainName(nameString,
clientContext,clientCallback)

Translates a domain name into the domain name for a mail server that serves
that domain.

nameString An Internet domain name string.

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-65

clientCallback The client callback function, as described in the section
“The Client Callback Parameter” on page 1-44.

The DNSGetMailServerNameFromDomainName function returns the
domain name for a mail server that serves the domain specified by
nameString. DNSGetMailServerNameFromDomainName fills in the
resultDomainName slot in a DNS results frame, as described in the section
“The Domain Name Service Callback Function Format” beginning on
page 1-50, and calls your callback function with the result code and that
frame as parameters. The following is an example of a results frame for the
DNSGetMailServerNameFromDomainName function:

{

type kDNSDomainNameType,

targetDomainName "newton.apple.com.",

resultDomainName "mail.newton.apple.com.",

}

The result code is nil if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If nameString ends with the period ('.') character, the string is assumed to
be in conformance with RFC 1123. If nameString does not end with the period
character, DNSGetMailServerNameFromDomainName attempts to
complete the name as follows:

■ DNSGetMailServerNameFromDomainName first appends a period to a
copy of nameString and attempts name resolution with that string.

■ If that request is not successful,
DNSGetMailServerNameFromDomainName appends the local domain
name and a period to a copy of nameString and attempts name resolution
with that string.

If there is more than one mail server for the domain specified by nameString,
the results array contains multiple resultDomainName frames, one for each
mail server. The frames are ordered in the results frame according to the
preference order of the mail exchange resource record. This is the order in

C H A P T E R 1

Newton Internet Enabler

1-66 Newton Internet Enabler Interface Reference

which a mail application should attempt to connect to the SMTP ports of
these servers.

DNSGetNameFromAddress 1

DNSGetNameFromAddress(address, clientContext,clientCallback)

Translates an Internet address into its corresponding domain name.

address An Internet IP address, specified as a NewtonScript
array of four integer values. For example:

[155, 227, 54, 3].

clientContext The client context, as described in the section “The
Client Context Parameter” on page 1-44.

clientCallback The client callback function, as described in the section
“The Client Callback Parameter” on page 1-44.

The DNSGetAddressFromName function finds the domain name string for
the IP address. DNSGetNameFromAddress fills in the resultDomainName
slot in a DNS results frame, as described in the section “The Domain Name
Service Callback Function Format” beginning on page 1-50, and calls your
callback function with the result code and that frame as parameters. The
following is an example of a results frame for the
DNSGetAddressFromName function:

{

type kDNSDomainNameType,

targetIPAddress [155,227,54,3],

resultDomainName "newton.apple.com.",

}

The result code is nil if the function succeeded; otherwise, the result code is
one of the error codes described in the section “DNS Error Codes” beginning
on page 1-32.

If there is more than one domain name for the address specified by address,
the results array contains multiple results frames, each with a
resultDomainName slots.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-67

Newton Internet Enabler Options 1
This section describes the options that you can use to control Newton
Internet Enabler.

Inet Tool Expedited Data Transfer ('iexp') Option 1

The Inet Tool expedited data transfer option is used for the expedited
transmission of an unsigned data byte. You can use this option with an
Output request to your endpoint to cause the data in that request to be sent
immediately. You typically use this to send a break character or a similar
indicator.

Here is an example of this option:

{

label: "iexp",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

[

15 // expeditedData byte

],

typelist:

[

'struct,

'byte

],

},

}

C H A P T E R 1

Newton Internet Enabler

1-68 Newton Internet Enabler Interface Reference

The data slots in the expedited data transfer option frame are described in
Table 1-6.

Inet Tool Physical Link Identifier ('ilid') Option 1

The Inet physical link identifier option is used to set or retrieve the physical
link identifier.

Here is an example of using this option to set the physical link identifier:

{

label: "ilid",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

[

linkID

],

typelist:

[

'struct,

'ulong

],

},

}

Table 1-6 Inet tool expedited data transfer option data slots

Option field Description

expeditedData The data byte that was received or is to be sent.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-69

The data slots in the physical link identifier option frame are described in
Table 1-7.

Inet Tool Local Port ('ilpt') Option 1

The Inet Tool local port option is used to set or retrieve the Internet port
number for a transport service. The rules shown in Table 1-9 apply to port
number assignments.

Here is an example of this option to set the port number:

{

label: "ilpt",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

[

7, // inetPortNumber

nil, // useDefault

],

typelist:

[

'struct,

'short,

'boolean

Table 1-7 Inet tool physical link identifier option data slots

Option field Description

linkID The link identifier.

C H A P T E R 1

Newton Internet Enabler

1-70 Newton Internet Enabler Interface Reference

],

},

}

The data slots in the local port option frame are described in Table 1-8.

Table 1-9 shows the use of the inetPortNumber slot, based on the service
type and operation.

Table 1-8 Inet tool local port option data slots

Option field Description

inetPortNumber The reserved port number for this service. This
value is used as described in Table 1-9

useDefault A Boolean value that applies only to connect
binds for the UDP transport service type. If
useDefault is true, the default UDP port
number is used.

Table 1-9 Use of the port number by the Inet tool

Service type
and operation Description

Connect over
TCP link

TCP picks this port; no need to set.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-71

Inet Profile ('iprf') Option 1

The Inet profile option is used to retrieve the the local and gateway IP
addresses used by your endpoint.

Here is an example of this option to get the IP addresses:

{

label: "iprf",

type: 'option,

opCode: opGetCurrent,

data:

{

arglist:

[

[0,0,0,0], // local host (Newton) IP address

[0,0,0,0], // gateway host IP address

],

typelist:

[

'struct,

Listen over
TCP link

The port on which to listen. Specify 0 to indicate
listening on all ports or use one of the port numbers as
specified in IEFT Assigned Numbers RFC.

Connect over
UDP link

The port to bind to locally. Specify useDefault:true
to indicate that Newton Internet Enabler should choose
the port number for you, in which case the assigned
value will be returned in the option.

Listen over
UDP link

The port on which to listen. Specify 0 to indicate
listening on all ports or use one of the port numbers as
specified in IEFT Assigned Numbers RFC.

Table 1-9 Use of the port number by the Inet tool (continued)

Service type
and operation Description

C H A P T E R 1

Newton Internet Enabler

1-72 Newton Internet Enabler Interface Reference

['array, 'byte, 4],

['array, 'byte, 4],

],

},

}

Inet Tool TCP Remote Socket ('itrs') Option 1

The Inet Tool TCP remote socket option is used to set or retrieve the
parameters of the remote host. If you are sending a Connect request over a
TCP link, you must use this option to retrieve the remote socket address; if
you are sending a Listen request over a TCP link, you can use this option
to retrieve the address of the sender of the data.

Here is an example of using this option to set the TCP remote socket:

{

label: "itrs",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

[

[130,43,2,2], // hostAddress

7, // InetPortNumber

],

typelist:

[

'struct,

['array, 'byte, 4],

'short

]

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-73

},

}

The data slots in the TCP remote socket option frame are described in
Table 1-10.

Inet Tool Transport Service Type ('itsv') Option 1

The Inet Tool transport service type option is used to specify the transport
service type associated with a link.

Here is an example of using this option to set the transport service type:

{

label: "itsv",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

[

kTCP // transportService

],

typelist:

[

Table 1-10 Inet tool TCP remote socket option data slots

Option field Description

hostAddress Internet address of remote host IP address,
expressed as four single-byte values.

InetPortNumber Reserved Internet port identifier.

C H A P T E R 1

Newton Internet Enabler

1-74 Newton Internet Enabler Interface Reference

'struct,

'ulong

],

},

}

The data slots in the link service type option frame are described in
Table 1-11.

Inet Tool UDP Destination Socket ('iuds') Option 1

The Inet Tool UDP destination socket option is used to set or retrieve the
Internet destination host Internet socket address that is used for data
transmission over a UDP link.

Here is an example of using this option to retrieve the current UDP
destination address:

{

label: "iuds",

type: 'option,

opCode: opSetRequired,

result: nil,

form: 'template,

data:

{

arglist:

Table 1-11 Inet tool link service type option data slots

Option field Description

transportService The transport service type. Use one of the
constants described in the section “Transport
Service Type Constants” beginning on
page 1-31.

C H A P T E R 1

Newton Internet Enabler

Newton Internet Enabler Interface Reference 1-75

[

[0,0,0,0] // hostAddress

0, // InetPortNumber

],

typelist:

[

'struct,

['array, 'byte, 4],

'short

]

}

}

The data slots in the UDP destination socket option frame are described in
Table 1-12.

Inet Tool UDP Source Socket ('iuss') Option 1

The Inet Tool UDP source socket option is used to retrieve the host Internet
socket address that sent a datagram received by your application.

Here is an example of using this option to retrieve the UDP source socket:

{

label: "iuds",

type: 'option,

opCode: opGetCurrent,

Table 1-12 Inet tool UDP destination socket option data slots

Option field Description

hostAddress The destination IP address, expressed as four
single-byte values.

InetPortNumber The reserved Internet port identifier.

C H A P T E R 1

Newton Internet Enabler

1-76 Newton Internet Enabler Interface Reference

result: nil,

form: 'template,

data:

{

arglist:

[

[0,0,0,0], // hostAddress

port, // InetPortNumber

],

typelist:

[

'struct,

['array, 'byte, 4],

'short

]

},

}

The data slots in the UDP source socket option frame are described in
Table 1-13.

Newton Internet Enabler Exceptions 1
Any of the Newton Internet Enabler functions that receive a link identifier as
a parameter can throw an exception if the link ID is not valid. The exception
frame is as follows:

Table 1-13 Inet tool UDP source socket option data slots

Option field Description

hostAddress The source IP address, expressed as four
single-byte values.

InetPortNumber The reserved Internet port identifier.

C H A P T E R 1

Newton Internet Enabler

Summary of Newton Internet Enabler 1-77

{

type: |evt.ex.comm|,

error: kInetErrNoSuchLinkID,

}

This exception is raised in response to two conditions:

■ You passed in a link ID that does not exist.

■ You passed in nil as the link ID and there are not any links defined.

Summary of Newton Internet Enabler 1

Link Controller Errors 1
constant kInetErrNoSuchLinkID := -60501;

constant kInetErrLinkDisconnected := -60504;

constant kInetErrConnectLinkFailed := -60505;

DNS Errors 1
constant kDNSErrNoAnswerFoundYet := -60751;

constant kDNSErrInternalErr := -60752;

constant kDNSErrNameSyntaxErr := -60791;

constant kDNSErrNoNameServer := -60794;

constant kDNSErrAuthNameErr := -60795;

constant kDNSErrNoAnswerErr := -60796;

constant kDNSErrNonexistentDomain := -60797;

constant kDNSErrOutOfMemory := -60798;

constant kDNSErrCouldNotContactServer := -60800;

constant kDNSErrNoServersAvailable := -60801;

constant kDNSErrRequestFormatErr := -60802;

constant kDNSErrServerInternalErr := -60803;

C H A P T E R 1

Newton Internet Enabler

1-78 Summary of Newton Internet Enabler

constant kDNSErrServerNotImplemented := -60804;

constant kDNSErrServerRefused := -60805;

constant kDNSErrUnknownServerErr := -60806;

constant kDNSErrNoResponseFromServer := -60814;

constant kDNSErrNoResponseFromAnyServer := -60815;

Newton Internet Enabler Lower-Level Tool Errors 1
constant kInetToolErrBindFailed := -60001;

constant kInetToolErrIPBindFailed := -60002;

constant kInetToolErrPushModule := -60004;

constant kInetToolErrIlink := -60005;

constant kInetToolErrNetActivateReq := -60006;

constant kInetToolErrTCPBind := -60007;

constant kInetToolErrGetRequest := -60008;

constant kInetToolErrPutRequest := -60009;

constant kInetToolErrConnect := -60010;

constant kInetToolErrDlAttach := -60011;

constant kInetToolErrBind := -60012;

constant kInetToolErrOpenLink := -60013;

constant kInetToolErrUnlink := -60014;

constant kInetToolErrOutOfPhase := -60015;

constant kInetToolErrAddRoute := -60016;

constant kInetToolErrListen := -60017;

constant kInetToolErrLinkNotOpened := -60018;

constant kInetToolErrDriverNotOpened := -60019;

constant kInetToolErrStreamNotOpened := -60020;

constant kInetToolErrBindReqFailed := -60021;

constant kInetToolErrConnResReqFailed := -60022;

constant kInetToolErrMemAlloc := -60023;

constant kInetToolErrMsgType := -60024;

constant kInetToolErrNoDevice := -60025;

C H A P T E R 1

Newton Internet Enabler

Summary of Newton Internet Enabler 1-79

constant kInetToolErrllegalOpenOnStream := -60026;

constant kInetToolErrReqInInvalidState := -60027;

constant kInetToolErrPrimitiveTooSmall := -60028;

constant kInetToolErrPrimitiveOutOfRange := -60029;

constant kInetToolErrPrimitiveOnInvalidStr := -60030;

constant kInetToolErrMessageTooLong := -60031;

constant kInetToolErrNetworkAlreadyActive := -60032;

constant kInetToolErrNetworkNumberInvalid := -60033;

constant kInetToolErrUnsupportedIoctl := -60034;

constant kInetToolErrStreamAlreadyAttached := -60035;

constant kInetToolErrUnknownMuxIndex := -60036;

constant kInetToolErrNetworkIsInactive := -60037;

constant kInetToolErrBogusConnection := -60038;

constant kInetToolErrInvalidBillingMode := -60039;

constant kInetToolErrNoTrigSelectedInAlarm := -60040;

constant kInetToolErrInvalidTrigSize := -60041;

constant kInetToolErrInvalidConnectionRef := -60042;

constant kInetToolErrIlegalMdataInPrim := -60043;

constant kInetToolErrMissingMdataInPrim := -60044;

constant kInetToolErrInvalidSegmentedPrim := -60045;

constant kInetToolErrInvalidNPIVersion := -60046;

constant kInetToolErrInvalidAddress := -60047;

constant kInetToolErrOutOfTCPPortNumbers := -60048;

constant kInetToolErrSocketInUse := -60049;

constant kInetToolErrReservedPortNumber := -60050;

constant kInetToolErrExpDataNotSupported := -60051;

constant kInetToolErrRedundentRequest := -60052;

constant kInetToolErrUnexpectedDLPrim := -60053;

constant kInetToolErrUnexpectedTPIPrim := -60054;

constant kInetToolErrUnexpectedNPIPrim := -60055;

constant kInetToolErrUnknownTPIErrorCode := -60056;

C H A P T E R 1

Newton Internet Enabler

1-80 Summary of Newton Internet Enabler

constant kInetErrStreamInoperative := -60057;

Link Controller Functions and Methods 1
linkId InetAddNewLinkEntry(newLinkInfo);
InetCancelCurrentRequest(linkId);
InetCancelLink(linkId, clientContext, clientCallback);
InetDisconnectLink(linkId, clientContext, clientCallback);
statusView InetDisplayStatus(linkId, statusView, status);
linksStatusFrame InetGetAllLinksStatus();
linkID InetGetDefaultLinkID();
linkEntry InetGetLinkEntry(linkID);
InetGetLinkStatus(linkID);
InetGrabLink(linkId, clientContext, clientCallback);
view InetOpenConnectionSlip(linkId, clientContext, clientCallback);
InetReleaseLink(linkId, clientContext, clientCallback);
InetSetDefaultLinkID(linkId);

DNS Functions and Methods 1
DNSCancelRequests(clientContext, clientCallback)
DNSGetAddressFromName(nameString, clientContext,clientCallback);
DNSGetMailAddressFromName(nameString, clientContext, clientCallback);
DNSGetMailServerNameFromDomainName(nameString,

clientContext,clientCallback);
DNSGetNameFromAddress(address, clientContext, clientCallback);

Exceptions 1
|evt.ex.comm|

IN-1

Index

A

application-related error codes 1-37

B

binding
local port numbers for 1-17

binding endpoints with links 1-17

C

callback functions 1-9
example of 1-10, 1-28
for DNS functions 1-50
for link controller functions 1-45

client callback 1-44
client context 1-26, 1-44
configuring links for endpoints 1-16
constants

application-related error codes 1-37
DNS error codes 1-32
Inet tool error codes 1-34
kEventToolSpecific 1-42
status code 1-31
tool-specific error codes 1-41
transport service type 1-31
UDP error codes 1-40

D

default link identifier 1-12, 1-43
displaying status 1-15
DNSCancelRequests function 1-28, 1-61
DNS error codes 1-32
DNSGetAddressFromName function 1-62
DNSGetMailAddressFromName function 1-63
DNSGetMailServerNameFromDomainName

function 1-64
DNSGetNameFromAddress function 1-66
DNS results frame 1-51
domain name service

about 1-2, 1-6

using 1-27

E

endpoints
and configuring links 1-16
binding with links 1-17
connecting with links 1-18
disconnecting 1-25
restrictions on use of 1-9
using several with one link 1-8, 1-9
with links 1-8

error codes
application-related 1-37
DNS 1-32
Inet tool 1-34
tool-specific 1-41
UDP 1-40

events 1-42
kEventToolSpecific 1-42

expedited data
receiving 1-25
sending 1-21

G

grabbing a link 1-5, 1-12

I

InetAddNewLinkEntry function 1-53
InetCancelCurrentRequest function 1-53
InetCancelLink function 1-53
Inet communications tool

about 1-2
InetDisconnectLink function 1-54
InetDisplayStatus function 1-15, 1-54
InetGetAllLinksStatus function 1-56
InetGetDefaultLinkID function 1-57
InetGetLinkEntry function 1-57
InetGetLinkStatus function 1-57
InetGrabLink function 1-12, 1-58
InetOpenConnectionSlip function 1-59

I N D E X

IN-2

Inet profile option 1-71
InetReleaseLink function 1-26, 1-60
InetSetDefaultLinkID function 1-61
Inet tool

about 1-4
Inet tool error codes 1-34
Inet tool expedited data transfer option 1-67
Inet tool local port option 1-69
Inet tool physical link identifier option 1-68
Inet tool TCP remote socket option 1-72
Inet tool transport service type option 1-73
Inet tool UDP destination socket option 1-74
Inet tool UDP source socket option 1-75
Internet Setup program 1-2

K

kEventToolSpecific event 1-42

L

link controller
about 1-2, 1-4
using 1-11

link controller status frame 1-45
link identifier 1-43
linkInfo frame 1-46
link information frame 1-46
links

binding with 1-17
configuring with endpoints 1-16
connecting to 1-18
default identifier for 1-12
grabbing 1-5, 1-12
releasing 1-26
sending data over 1-18
status of 1-15
with endpoints 1-8
with multiple endpoints 1-8, 1-9

local port numbers 1-17

M

methods and functions
DNSCancelRequests 1-28, 1-61
DNSGetAddressFromName 1-62
DNSGetMailAddressFromName 1-63
DNSGetMailServerNameFromDomainName 1-64
DNSGetNameFromAddress 1-66

InetAddNewLinkEntry 1-53
InetCancelCurrentRequest 1-53
InetCancelLink 1-53
InetDisconnectLink 1-54
InetDisplayStatus 1-15, 1-54
InetGetAllLinksStatus 1-56
InetGetDefaultLinkID 1-57
InetGetLinkEntry 1-57
InetGetLinkStatus 1-57
InetGrabLink 1-12, 1-58
InetOpenConnectionSlip 1-59
InetReleaseLink 1-26, 1-60
InetSetDefaultLinkID 1-61

N

Newton Internet Enabler
about 1-2
and communications endpoints 1-8
callback functions 1-9
components 1-3
components of 1-2
events 1-42
options for 1-29
using 1-7

O

options
for each endpoint call 1-29
for Newton Internet Enabler 1-67
Inet profile ('iprf') 1-71
Inet tool expedited data transfer ('iexp') 1-67
Inet tool local port ('ilpt') 1-69
Inet tool physical link identifier ('ilid') 1-68
Inet tool TCP remote socket ('itrs') 1-72
Inet tool transport service type ('itsv') 1-73
Inet tool UDP destination socket ('iuds') 1-74
Inet tool UDP source socket ('iuss') 1-75
using 1-29

P

power management 1-27

R

receiving data 1-21

I N D E X

IN-3

expedited 1-25
with TCP 1-23
with UDP 1-21

releasing links 1-26
results frame 1-51

S

sending data 1-18
expedited data 1-21
with TCP 1-20
with UDP 1-19

status code constants 1-31
status frame 1-45
status information 1-15

T

TCP
receiving data with 1-23
sending data with 1-20

tool-specific error codes 1-41
transport service type constants 1-31

U

UDP
receiving data with 1-21
sending data with 1-19

UDP error codes 1-40

	Contents
	Newton Internet Enabler
	About Newton Internet Enabler
	Figure�1-1 The Newton Internet Enabler layers and ...
	The Inet Tool Layer
	The Link Controller
	The Domain Name Service Interface

	Using Newton Internet Enabler
	Using Endpoints With Newton Internet Enabler Links...
	Using Multiple Endpoints With a Link

	Newton Internet Enabler and Callback Functions
	Using the Newton Internet Enabler Link Controller
	Grabbing a Link
	Retrieving and Displaying Link Status Information
	Configuring Newton Internet Enabler for Your Endpo...
	Binding Your Endpoint with Newton Internet Enabler...
	Table�1-1 Local port numbers for binding with Newt...

	Connecting Your Endpoint with Newton Internet Enab...
	Sending Data
	Sending Data With a UDP Connection
	Sending Data With a TCP Connection

	Receiving Data
	Receiving Data With UDP
	Receiving Data With TCP

	Disconnecting Your Endpoint
	Releasing Your Link
	Power Management and Internet Links

	Using the Domain Name Service Interface
	Using the Newton Internet Enabler Options
	Table�1-2 Newton Internet Enabler options (continu...

	Newton Internet Enabler Interface Reference
	Constants
	Status Code Constants
	Transport Service Type Constants
	Link Controller Error Codes
	DNS Error Codes
	Newton Internet Enabler Lower-Level Tool Errors
	Inet Tool Errors
	Application-related Errors
	UDP Errors
	Inet Tool-Specific Errors

	Newton Internet Enabler Events
	Table�1-3 Newton Internet Enabler Application Even...
	Handing TCP Disconnect Events

	Newton Internet Enabler Function Parameter Informa...
	The Link Identifier Parameter
	The Client Context Parameter
	The Client Callback Parameter
	The Link Controller Callback Function Format
	The Link Controller Status Frame

	The Link Entry Information Frame
	Login Script Frames
	Table�1-4 Login script frames (continued)

	The Domain Name Service Callback Function Format
	The DNS Results Frame
	Table�1-5 Result slots for each DNS operation

	Link Controller Functions and Methods
	InetAddNewLinkEntry
	InetCancelCurrentRequest
	InetCancelLink
	InetDisconnectLink
	InetDisplayStatus
	InetGetAllLinksStatus
	InetGetDefaultLinkID
	InetGetLinkEntry
	InetGetLinkStatus
	InetGrabLink
	InetOpenConnectionSlip
	InetReleaseLink
	InetSetDefaultLinkID

	Domain Name Service Functions and Methods
	DNSCancelRequests
	DNSGetAddressFromName
	DNSGetMailAddressFromName
	DNSGetMailServerNameFromDomainName
	DNSGetNameFromAddress

	Newton Internet Enabler Options
	Inet Tool Expedited Data Transfer ('iexp') Option
	Table�1-6 Inet tool expedited data transfer option...

	Inet Tool Physical Link Identifier ('ilid') Option...
	Table�1-7 Inet tool physical link identifier optio...

	Inet Tool Local Port ('ilpt') Option
	Table�1-8 Inet tool local port option data slots
	Table�1-9 Use of the port number by the Inet tool ...

	Inet Profile ('iprf') Option
	Inet Tool TCP Remote Socket ('itrs') Option
	Table�1-10 Inet tool TCP remote socket option data...

	Inet Tool Transport Service Type ('itsv') Option
	Table�1-11 Inet tool link service type option data...

	Inet Tool UDP Destination Socket ('iuds') Option
	Table�1-12 Inet tool UDP destination socket option...

	Inet Tool UDP Source Socket ('iuss') Option
	Table�1-13 Inet tool UDP source socket option data...

	Newton Internet Enabler Exceptions

	Summary of Newton Internet Enabler
	Link Controller Errors
	DNS Errors
	Newton Internet Enabler Lower-Level Tool Errors
	Link Controller Functions and Methods
	DNS Functions and Methods
	Exceptions

